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Abstract. We present a renormalization approach to solve the Sznajd opinion formation model on complex
networks. For the case of two opinions, we present an expression of the probability of reaching consensus for
a given opinion as a function of the initial fraction of agents with that opinion. The calculations reproduce
the sharp transition of the model on a fixed network, as well as the recently observed smooth function for
the model when simulated on a growing complex networks.

PACS. 89.65.-s Social and economic systems – 89.75.Fb Structures and organization in complex systems
– 02.70.Uu Applications of Monte Carlo methods – 07.05.Tp Computer modeling and simulations

1 Introduction

Opinions can either be made up by a person or taken
over from another person. Sometimes some people try to
force their opinions on others. In general, all people are
free to form opinions as they see fit. The mechanism of
opinion formation is “normative”, i.e., normative in the
sense of what ought to be, opposed to a “positive” mecha-
nism, which is based on observation what is [1]. Based on
this facts, and with the necessary simplifying assumptions,
socio-physics gave the opportunity to apply techniques of
statistical physics to model opinion formation among peo-
ple [2–4].

One of the opinion formation models that has gener-
ated immediate interest in many authors on the field is the
Sznajd model [5], which is based on the slogan “together
we stand”: individuals are represented by the lattice nodes
(one-dimensional in its first version), and each randomly
selected pair of neighbors convinces all their neighbors of
their opinions, if and only if the pair shares the same opin-
ion; otherwise, the neighbors’ opinion are not affected. It
differs from other consensus models by dealing only with
communication between neighbors, and the information
flows outward as in rumor spreading: a site does not fol-
low what the neighbors tell the site.

On networks with fixed size, the results of the model do
not depend much on the spatial dimensionality and type
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of neighborhood selected (i.e., two nodes convince the oth-
ers, three convince the others, etc.) [6,7,9]. In the case of q
choices of opinion, the model has q homogeneous absorb-
ing states, where all individuals choose the same opinion;
in the context of opinion, one says the system reaches
consensus. The case of two opinions (q = 2) has been the
most studied, denoting opinions as Ising variables “up”
or +1, and “down” or −1. In more than one dimension,
the probability (Pup) of reaching consensus “all up” de-
pends on the initial fraction p of individuals with opinion
“up”; for p > 0.5, the probability of reaching “all up” as
stationary state is close to one, while for p < 0.5 it is neg-
ligible, having a sharp transition in p = 0.5, which can
be interpreted as a dynamical phase transition. Computer
simulations in [8] indicate that the universality class as-
sociated with this dynamical phase transition is different
from the universality class of the Ising model. The distri-
bution of time needed to reach the stationary state is a
peak followed by a fast decay [10].

Much less is known about the Sznajd model on growing
networks. Interactions of groups of people in some circum-
stances can be thought as a growing system, i.e., in a city
with positive rate of immigration. In a first and simple
approximation, it can be modeled by a growing scale-free
network [11]. Recently, applying a Sznajd model recipe
not after the complete network has been constructed, but
while the network grows, i.e, while each new node is added
to the network, one could observe that the Sznajd model
simulated on scale-free networks, Barabási-Albert network
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Fig. 1. The first four generations of the scale-free hierarchical graph. The growth start from a single edge connecting two
vertices at t = −1. At each iteration step t, every edge generates an additional vertex, which is attached to the two vertices of
this edge. The graph at t + 1 can be made by connecting together three t graphs.

and a hierarchical network [12], the system reaches con-
sensus [13,14]. But in contrast to the sharp transition ob-
served for the networks of fixed size, in which the Sznajd
recipe is performed only after building up completely the
network, the probability that the system reaches “all up”
for a growing complex networks is a smooth function of p.
In addition, this function depends on the type of neigh-
borhood selected.

In this work, we propose a real space renormalization
approach [16] to calculate the probability Pup(p) of reach-
ing consensus on opinion “up” as a function of the initial
fraction p of opinion “up”. Our results are for two common
rules of neighborhood, namely “r-convince all their neigh-
bors”, with r = 2 and r = 3. We have obtained the two
well-known results known for the model: a smooth func-
tion of p for the growing case and an expression which
approximates the step function for fixed networks.

In the next section, we present the hierarchical network
used in our calculations. Then, we present the renormal-
ization approach and the analytical expressions obtained,
each case is compared with the results from the numerical
simulations, previously reported in [14], as well as for the
BA scale-free network.

2 Hierarchical network

The deterministic scale-free graph used in this work grows
as follows: It starts from a single edge connecting two ver-
tices at t = −1. Thus, at t = 0, we have a triangle of edges
connecting three vertices, at t = 1, the graph consists of
6 vertices connected by 9 edges, and so on (see Fig. 1).
Note that the graph at t + 1 can be made by connecting
together three t graphs. The total number of vertices at
iteration t is

Nt =
3(3t + 1)

2
. (1)

This simple rule produces a complex growing network. The
resulting graph is not a fractal, as is already pointed out
in [12] the graph is surrounded by a long chain of edges and
the resulting structure has not a fixed fractal dimension in
contrast to, for example the perfect fractal generated in
the Migdal-Kadanoff renormalization procedure [15]. In

the next section, we present the use of this hierarchical
network to find expressions that agree with the simulated
results of the Sznajd model on complex networks.

3 Renormalization approach

Our method can be very intuitive and is based on the
method proposed by Galam to study bottom-up demo-
cratic voting by majority rule in a square lattice [3], where
the predictions of the results in all the lattice are based
on the applications of the majority rule over a basic cell
of neighbors, called renormalization cell.

We find that given a neighborhood rule, it is enough
to choose an appropriate generation of a hierarchical net-
work for calculating Pup(p)|r,g, which agrees with the the
numerical results of the model on growing networks. The
subscript index r, g in Pup(p)|r,g is to stress that the result-
ing function belongs to a chosen Sznajd rule (r) in a grow-
ing network (g). Subsequent self-iterations of Pup(p)|r,g re-
sult in a step function, i.e., Pn

up(p)|r,g = Pup(p)|r,f , where
the subscript index f corresponds to the result obtained
for a network of fixed size.

For a population fraction p with opinion “up”, the gen-
eral method is as follows:

– Given a neighborhood rule r, the chosen basic cell cor-
responds to the minimum generation t of the hierarchi-
cal network, such that r > Nt (the r agents must have
at least one agent to convince). We call this resulting
number of nodes in the cell nr.

– The probability of each possible configuration in a el-
ementary cell is easily calculated, such that

1 = Pall(p)|r =
nr∑

k=2

Bnrkpk(1 − p)nr−k. (2)

with the binomial coefficient Bnrk over the appropriate
cell for the chosen rule:

Bnrk = nr!/[k!(nr − k)!]. (3)
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– From all the configurations calculated above, we select
the subset that gives “all up” when applying the se-
lected Sznajd rule on the cell, the sum of all of them
is Pup(p)|r,g:

Pup(p)|r,g = Pall(p)|r,up (4)

Next, we illustrate the result of the method with r = 2
and r = 3.

3.1 Case r = 2

3.1.1 Growing

For r = 2, the triangle of the generation t = 0 is the
basic cell. Thus nr = 3 and, for a given fraction p, all the
possible configurations are:

1 = Pall(p)|2 = p3 +2p2(1−p)+2p(1−p)2 +(1−p)3. (5)

If we apply the selected Sznajd rule r = 2 over the triangle,
only the configurations expressed in the first two terms of
the sum give “all up”. Therefore:

Pup(p)|2,g = p3 + 2p2(1 − p) = 3p2 − 2p3. (6)

In Figure 2, we can see the good agreement of equation 6
with the numerical results [14] for the Sznajd model on
a growing hierarchical, as well as for the Barabási-Albert
scale-free network [11].

3.1.2 Fixed

In order to recover the reported result on a fixed network,
one makes renormalization iterations, which means simply
self-composing the equation (6):

Pup(p)|2,f = Pni
up (p)|2,g, (7)

and in the limit of large number of iterations (ni −1), one
recovers the step function observed numerically for the
model on fixed networks. Note that the number of terms
and the coefficients sizes increase very fast, as one can
observe in the expression of only one composition:

P 2
up(p)|2,g = 27 p4 − 36 p5 − 42 p6 + 108 p7 − 72 p8 + 16 p9,

(8)
therefore, the multiple compositions presented in Figure 2
are iterated with a computer. Figure 3 shows that the
numerical simulations on large networks tend to the step
function calculated from equation 8 with ni = 100.

3.2 Case r = 3

3.2.1 Growing

The core of the method is the selection of the correct con-
figurations after applying the Sznajd rule on it. As we will
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Fig. 2. Comparison between the function presented in equa-
tion 6 (solid line) with Monte Carlo simulations on a grow-
ing hierarchical network (triangles with error-bars) and on
a growing BA scale-free network (stars). In both networks,
29 576 nodes are considered. We count the number of samples,
out of 1000, for which the fixed point all “up” is obtained when
different values for the initial concentration p of nodes “up” are
simulated for rule r = 2.
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Fig. 3. Equation (7) with ni = 100 (solid line) compared with
simulations on a fixed hierarchical networks with Nt = 29 576,
797 163 and 2 391 486 nodes (dashed line with symbols). Other
simulation conditions as presented in the caption of Figure 2.
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Fig. 4. Equation (10) (solid line) compared with the results
from the simulations on a growing hierarchical network (trian-
gles with error-bars) and on a growing BA scale-free network
(stars) when r = 3. The other simulation conditions are the
same of Figure 2.

see for this rule, when the number of nodes in the renor-
malization cell is even, there are some symmetrical con-
figurations which can have either “all up” or “all down”
with the same probability. In this case only half of them
are summed to Pup. For r = 3, the generation t = 1 is the
basic cell. Thus nr = 6 and, for a given fraction p, all the
possible configurations are:

1 = Pall(p)|3 = (1 + (1 − p))6. (9)

Note that the values of the binomial coefficient in the con-
secutive terms are: 1, 6, 15, 20, 15, 6, 1. From the 20 config-
urations of the 4th term, there are 7 that give “all up”
(shown in Fig. 6 at Appendix A), the corresponding 7
opposed cases which give “all down”, and 6 symmetrical
configurations shown in Figure 7 (Appendix A) that can
give either “all up” or “all down”. Therefore, these group
of configurations contribute with 7+0.5×6, and we have:

Pup(p)|3,g =p6+6 p5 (1 − p)+15 p4 (1−p)2+10 p3 (1 − p)3 .
(10)

In Figure 4, we see that equation (10) agrees very well
with the numerical results [14] for the Sznajd model on a
growing network when the rule r = 3 is considered.

3.2.2 Fixed

The result of the composition for this case is far more
complicated and only 1 self-composition of equation (10)
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Fig. 5. Equation (10) self-composed in 9 steps (solid line) com-
pared with the result from the simulations on a fixed hierarchi-
cal network networks with r = 3 (dashed lines with symbols).
The other simulation conditions are the same as presented in
the caption of Figure 3.

(ni = 2) already needs a computer, as shows the
following expression:

Pup(p)|23,g =

− 1249989 p12 + 390897 p11 − 158184 p10 + 28561 p9−
643783179 p18+270741222 p17−100735317 p16+41109081

p15 − 17504838 p14 + 5585931 p13 − 15244686567 p24

+ 11863411551 p23 − 7642674243 p22 + 4315583718 p21

− 2347570026 p20 + 1281132990 p19 − 816731505 p30+

2281401855 p29 − 5100164190 p28 + 9199907505 p27−
13440029166 p26 + 15908268375 p25 − 2187 p36 + 65610 p35

− 925101 p34 + 8148762 p33−50268195 p32+230706630p31

In Figure 5 we see the step function obtained with only
9 steps of composition compared with the numerical re-
sults on a fixed network of different sizes; as we see the
results agree very well with the simulations of the model
on large networks.

4 Conclusions

Based on opinion formation rules of the usual Sznajd
model, we use a renormalization approach to give an ex-
pression for the probability of consensus into one opinion
as a function of the initial fraction of this opinion.
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Fig. 6. Configurations that generate consensus “all up” with
r = 3 and the same fraction of opinions “up” and “down”.

We show that for a given Sznajd rule it is enough to
solve exactly the model on an appropriate basic cell in
order to find an expression for the smooth function, found
numerically for the model on a growing network. Several
self-compositions of the obtained function give the step
function observed for the model on a network of fixed size.
Further renormalization patterns has to be tested, but in
order to reproduce the results of the Sznajd model on
growing SF networks, a SF hierarchical network must be
chosen.

The proposed method could be, in principle, extended
to other types of neighborhood and more interestingly to
many choices of opinion (q > 2), which is an feature of
the model used to simulate elections processes [10,14,17],
obtaining results consistent with some empirical observa-
tions [18].

The authors would like to thank Dietrich Stauffer and
Katarzyna Sznajd-Weron for useful discussions. MCG thanks
Deutscher Akademischer Austausch Dienst (DAAD), Ger-
many, for financial support.

Appendix A: Configurations with the same
fraction of nodes “up” and “down”

Here we present some of the possible configurations apply-
ing the Sznajd rule corresponding to the r = 3 on its ap-
propriate renormalization pattern (n3 = 6). In particular,
we show the case of half of the nodes having opinion up,
mentioned in Section 3.2.1,and represented by the fourth
term in equation (10).

Figure 6 shows the 7 configurations that give as a result
“all up”, when applying the Sznajd rule, i.e., three consec-
utive nodes with opinion +1 convince all their neighbors.
Note that interchanging + and −, we have the 7 configu-
rations for the opposed case of consensus “all down”.

Fig. 7. Configurations that generate either consensus “all up”
or “all down” with r = 3.

Figure 7 presents the 6 symmetrical configurations
that have 3 consecutive nodes with +1, as well as 3 nodes
with −1 giving consensus “all up” or “all down”, respec-
tively. Thus, these configurations contribute wit 0.5×6 to
the probability of consensus “all up” (Pp), as showed in
Section 3.2.1.
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